
Estimating normal moveout velocity using the recurrent neural network

Reetam Biswas1, Anthony Vassiliou2, Rodney Stromberg2, and Mrinal K. Sen1

ABSTRACT

Machine learning (ML) has recently gained immense popularity because of its successful application in com-
plex problems. It develops an abstract relation between the input and output. We have evaluated the application
of ML to the most basic seismic processing of normal moveout (NMO) correction. The arrival times of reflection
events in a common midpoint (CMP) gather follow a hyperbolic trajectory; thus, they require a correction term
to flatten the CMP gather before stacking. This correction term depends on an rms velocity, also referred to as
the NMO velocity. In general, NMO velocity is estimated using the semblance measures and picking the peaks in
the velocity panel. This process requires a lot of human intervention and computation time. We have developed
a novel method using one of the tools based on an ML- approach and applied to the NMO velocity estimation
problem. We use the recurrent neural network (RNN) to estimate the NMO velocity directly from the seismic
data. The input to the network is a seismic gather and corresponding precalculated NMO velocity (as prelabeled
data set) to flatten the gather. We first train the network to develop a relationship between the input gathers
(before NMO correction) and the corresponding NMO velocities for a few CMPs as a supervised learning proc-
ess. Adam optimization algorithm is used to train the RNN. The output from the network is then compared
against the correct NMO velocity. The error between the two velocities is then used to update the weight
of the neurons and to minimize the mean-squared error between the two velocities. After the network is trained,
it can be used to calculate the NMO velocity for the rest of the seismic gathers. We evaluate our method on a
noisy data set from Poland. We used only 10% of the CMPs to train the network, and then we used the trained
network to predict NMO velocity for the remaining CMP locations. The stack section obtained by using RNN-
generated NMO velocities is nearly identical to that obtained by the conventional semblance method.

Introduction
Machine learning (ML) was developed several decades

ago, but its use in seismic processing and interpretation
has been limited, mainly due to the lack of powerful com-
putational resources. Conventional ML algorithms such
as the artificial neural network (ANN) have been applied
to multiple areas of science and engineering. There have
been several successful attempts in the geophysics com-
munity as well. For example, first-break picking using
ANN (e.g., Murat and Rudman, 1992; McCormack et al.,
1993; Wang and Teng, 1997), obtaining subsurface elastic
attributes (Röth and Tarantola, 1994; Calderón-Maciás
et al., 2000; Moya and Irikura, 2010), studying reservoir
characterization using seismic reflection data (An and
Moon, 1993), velocity picking from velocity scans for
velocity analysis (Schmidt and Hadsell, 1992; Fish and
Kusuma, 1994; Calderón-Maciás et al., 1998), and study
of S-wave splitting (Dai and MacBeth, 1994).

With the development of low-cost, powerful com-
puters and graphics cards, there has been a steep

increase in the use of various new and sophisticated
ML algorithms. They are now widely accepted in almost
every field of research, such as handwriting recognition,
speech recognition, and signal detection (e.g., Freeman
and Skapura, 1991; Cichocki and Unbehauen, 1993). In
particular, the convolution neural network (CNN) (Le-
Cun et al., 1989) has found extraordinary success in
the field of computer vision. CNN outperformed various
conventional methods for image classification (Krizhev-
sky et al., 2012), object detection (Girshick et al., 2014),
and image segmentation (Ronneberger et al., 2015) by a
considerable margin. Some studies report that some
deep CNN-based networks have better classification suc-
cess rates than humans (Russakovsky et al., 2015; He
et al., 2016). There have been some applications of
CNN in the geophysical field as well, for example, salt
body classification (Di et al., 2018; Shi et al., 2018), fault
body interpretation from seismic images (Wu et al.,
2018), and first-arrival picking of microseismic events
(Wu et al., 2019). Ma et al. (2018) use CNN for velocity

1The University of Texas at Austin, Institute for Geophysics and Department of Geological Sciences, John A. and Katherine G. Jackson School of
Geosciences, Austin, Texas 78713-8924, USA. E-mail: reetam@utexas.edu (corresponding author); mrinal@utexas.edu.

2GeoEnergy Inc., 3100 Wilcrest Dr. #220, Houston, Texas 77042, USA. E-mail: anthony@geoenergycorp.com; rod@geoenergycorp.com.
Manuscript received by the Editor 19 December 2018; revised manuscript received 19 May 2019; published ahead of production 05 August 2019;

published online 20 September 2019. This paper appears in Interpretation, Vol. 7, No. 4 (November 2019); p. T819–T827, 11 FIGS.
http://dx.doi.org/10.1190/INT-2018-0243.1. © 2019 Society of Exploration Geophysicists. All rights reserved.

t

Technical papers

Interpretation / November 2019 T819Interpretation / November 2019 T819

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://crossmark.crossref.org/dialog/?doi=10.1190%2FINT-2018-0243.1&domain=pdf&date_stamp=2019-09-20


picking for normal moveout (NMO) correction; however,
they modify the problem into a classification problem,
in which the class represents a multiplier of a constant
velocity. Most CNN applications are based on a classi-
fication problem, and geophysical problems involve
mainly parameter estimation-based or regression prob-
lems. However, Biswas et al. (2019) use CNN to solve
an inverse problem, in which the training is guided by
the physics of the forward problem.

In this paper, we consider a regression problem, in
which we aim to estimate the NMO velocity directly
from the seismic data. We want the network to learn
a mapping from the seismic data domain to velocity
such that it can flatten out the gathers while performing
NMO correction. One of the vital points in the problem
is that the seismic data set represents a time series, but
along with it, offset information is also necessary; i.e.,
the spatial and temporal information are essential for
the NMO velocity estimation. Another robust ML algo-
rithm is the recurrent neural network (RNN), which
works on a time series type of data. RNN has a straight-
forward network architecture, and it is very similar to a
multilayer feedforward neural network (FNN).

Due to its flexibility, the FNN can be generalized to a
variety of problems. It has been applied extensively to
solve a pattern-recognition problem. In an FNN, a signal
travels only in one direction from input to output, and
the output of one layer does not affect that same layer;
it is just a relation from input to output. Calderón-
Maciás et al. (1998) attempt to estimate NMO velocity
using an FNN, and Schmidt and Hadsell (1992) attempt
to estimate NMO velocity using the time delay neural
network. However, unlike FNN, a recurrent network
provides a feedback loop in the network, and a signal
can travel in both directions. In RNN, the output of the
current state is dependent on the output of the previous
states as well; thus, it develops a network memory.
It tries to find a correlation between events separated
by many moments, long-term dependencies: They are a
way to share weights over time. Thus, defining a deep
RNN in this manner can make the network very power-
ful, but it can get very complicated. This feedback loop

makes RNN dynamic; the state of the RNN changes con-
tinuously until a balance is reached. Again, with new
input, the network adapts to find a new equilibrium.
Training the network consists of a set of training input
data and corresponding correct output. The weights of
the neurons are initially randomly assigned, but they are
updated while training, by backpropagating through
time. The network learns the abstract relationship be-
tween the input-output pattern and minimizes the error
between the predicted output and correct output. After
the network is trained, it is applied to a new data set for
which the output is not known.

Due to the flexibility of RNN, it has been popular in a
wide range of problems. It can work on any size and
number of input and output pairs. There are many differ-
ent flavors of RNN, as shown in Figure 1. The first kind is
the vanilla RNN, which is the simplest one and maps the
relationship between one input-output pair. In the sec-
ond kind, one input corresponds to many outputs, and
it is used in problems such as image captioning (Mao
et al., 2014). The third type involves many inputs to
one output, used in high-level segment classification, like
guessing the emotion from a sentence (Lee and Tashev,
2015). The last kind ismany-to-many classifications, used
for machine translation, like translating from one lan-
guage to another (Bahdanau et al., 2014).

According to the dynamical systems, RNN has been
classified into two main groups (Lukoševičius and
Jaeger, 2009). The first category of RNN is a stochastic
system having symmetric connections with the goal to
minimize the energy of the system. Some examples in-
clude Hopfield networks (Hopfield, 1982, 2007), Boltz-
mann machines (Hinton, 2012), and deep belief
networks (Hinton and Salakhutdinov, 2006). The training
for these networks is mostly done in an unsupervised
fashion using statistical physics. Recently, Vamaraju
and Sen (2018) apply Hopfield neural network for migra-
tion, Phan and Sen (2018) apply the Hopfield neural net-
work for prestack seismic inversion, and Huang (1997)
uses the Hopfield neural network for seismic horizon
picking. In the second category of RNN, the dynamics
is updated in a deterministic way and has directed con-
nections. It transforms an input time series to an output
time series using several nonlinear filters. The weights
are updated in a supervised way. One other example in-
cludes long short-term memory (Hochreiter and Schmid-
huber, 1997). Recently, Alfarraj and AlRegib (2018) and
Alfarraj et al. (2018) use RNN to estimate petrophysical
property from seismic data. Richardson (2018) uses a
deep RNN to solve a seismic full-waveform inversion,
and Moseley et al. (2018) use WaveNet, which is a mixed
deep network of a convolutional and an RNN, to an
approximate simulation of seismic waves.

The proposed approach in this paper is of the second
category and can handle a nonlinear time series quite
well. These networks are outstanding in generalizing
the relationship in a dynamic system (Funahashi and
Nakamura, 1993). In the following sections, we first
describe the basic structure of the network and thenFigure 1. Different flavors of RNN.

T820 Interpretation / November 2019

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



demonstrate its working on a real land data set from
Poland.

Theory
This section introduces various basic concepts about

the RNN and describes the way data are input in the
network to calculate the NMO velocity.

Recurrent neural network
The architecture of an RNN is similar to an FNN, ex-

cept that the RNN has a feedback loop, a connection
pointing backward. An FNN is just a functional mapping
from input to output. However, RNN is a dynamical sys-
tem and can develop a self-sustained dynamics of tem-
poral activation along the path within itself, even
without any input because of the feedback loop. Figure 2
shows an example of a simple RNN. Figure 2a shows a
recursive model of the RNN, and Figure 2b shows the
corresponding network structure when it is unrolled
through time. At any time step t, every neuron in an
RNN has input vectors as xt and previous time step’s out-
put vector yt−1 as shown in Figure 2b. RNN helps us to
examine the functional map f ∶x → y between the given
input sequence x ¼ x1;x2; : : : ;xt with the correspond-
ing output sequence vector y ¼ y1; y2; : : : ; yt. Two
weights correspond to every neuron in RNN, one for
the input signal x represented as Wxy and the other
for the previous time step’s output y represented as
Wyy. We can represent the network using

yt ¼ ϕðWT
xy · xt þWT

yy · yt−1 þ bÞ; (1)

where ϕ represents the activation function and b is the
bias vector. In ML, there are several choices of activation
available, e.g., rectified linear unit (ReLU), tanh, and sig-
moid. In our application, we have used the ReLU activa-
tion function defined by ðf ðxÞ ¼ maxð0; xÞÞ because it
provides better capability than sigmoid (Krizhevsky et al.,
2012). In an RNN, multiple hidden layers can be included
to represent a deep neural network. Multiple layers in the
RNN help to capture the different degree of features and
predict a better output.

During the training of the network, in a single itera-
tion, we update the weight for not just a
single sequence but multiple sequences
of data known as a minibatch. Equa-
tion 1 can be modified to compute the
output of the whole minibatch in a single
shot by representing it as

Yt ¼ ϕðXt · Wxy þ Yt · Wyy þ b

¼ ϕð½Xt Yt−1� · W þ bÞ; (2)

with W ¼
�
Wxy

Wyy

�
. If the minibatch has

m instances of different sequences con-
taining nn neurons and ni input vector
size; then matrix Yt has a dimension

of m × nn, Xt has m × ni, Wxy has ni × nn, Wyy has
nn × nn, and, finally, the bias vector b has a dimension
of nn. Note that Yt is a function of Xt and Yt−1, which
again is a function of Xt−1 and Yt−2 and so on. Thus, Yt is
a function of all the inputs because time t ¼ 0. The value
of Y0 is typically set to zero. Because the neurons are
dependent on the previous output, the network devel-
ops a memory. The network uses the memory of the
previous inputs to predict the future output. Note that
the memory for a long distant time fades away because
of the responsible gradient diffusing over time (Bengio
et al., 1994).

The output vector y from RNN is a vector of size nn,
but we can modify the length to the desired length by
applying a fully connected layer on top of the RNN. This
can be represented as

Zt ¼ FCðytÞ; (3)

where the fully connected layer FC has a weightWf c of
a dimension of nn × k, where k is the number of the de-
sired output, and here Z represents the NMO velocity in
our implementation. Now, after a single forward pass
for a minibatch, we use the mean-squared error of
the predicted velocity and the given velocity as

E ¼ 1
m

Xm
i¼1

ðZgiven − ZpredictedÞ2: (4)

The error calculated in equation 4 is used for updating
the weights in the RNN. Note that the RNN shares the
same weights over the complete time series. Using the
chain rule, we can write the gradient of the weights as

∂E
∂W

¼
XT
t¼1

Xt

k¼1

∂Et

∂zt
∂zt
∂yt

∂yt
∂yk

∂yk
∂W

; (5)

where T is the total time steps in the time series. The red
line in Figure 2 shows the direction of the backpropaga-
tion, and the weights are updated using a given learning
rate, as a step length toward the update. We use the
Adam optimization algorithm (Abadi et al., 2015) for min-
imizing the error between the predicted output and the

Figure 2. A simple example of an RNN: (a) the recursive form of RNN and
(b) the extended form of RNN in time.

Interpretation / November 2019 T821

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



true output by updating the weights. Adam optimization
uses the first- and second-order moments, and it is invari-
ant to the diagonal rescaling of the gradient.

NMO velocity estimation
Due to the distance between the seismic source and

the receiver, there is some shift in the arrival time of the
reflected seismic signal, and it increases with the offset.
This relationship between the arrival time and the offset
is hyperbolic, and for a flat horizontal reflector, the trav-
eltime equation can be given by

t2 ¼ t20 þ
x2

v2
; (6)

where t0 is the arrival time for normal incidence, x is the
offset, and v is the velocity of the medium above the
reflecting surface and is the rms velocity in the case
of multiple interfaces. There can be multiple hyperbolas
in a common-midpoint (CMP) gather spanning a large
offset and in the temporal direction. Thus, estimating
correct NMO velocity can be quite challenging. The
NMO velocity should be able to place reflection at
the correct location of the reflector, and all the energy
should line up with the zero-offset reflector to add up
constructively during stacking. Conventionally, NMO
velocity is calculated by performing velocity scans
for a range of velocities and generating semblance
curve. We then pick the maximum amplitude at every
time step from the semblance curve.

Because the hyperbolas are spread in time and off-
set, one of the crucial information for estimating veloc-
ity at a particular time step is the temporal and spatial
information from the nearby time step and offset.
Therefore to estimate NMO velocity at a particular time

step, we have used a window on the seismic gathers,
spanning the whole offset range (NX) and 2N in the
temporal direction. Figure 3 shows the representation,
in which the dimension of the window (represented in
the red) used is 2N × NX , for estimating the NMO veloc-
ity at the center of the box represented in the magenta
color and the estimated velocity represented by the
green circle in the NMO velocity panel.

Figure 4 shows our RNN network architecture used
in the NMO velocity estimation problem. The input (X)
to the network is the seismogram in the red block
shown in Figure 3 having a dimension of [p × ninputs],
where p is the time steps (2N) and ninputs is the number
of offsets (NX); i.e., each Xi represents a time step from
the window having a dimension of [NX × 1], spanning
the offset. During training, we also provide correct out-
put (Z), which is the preestimated NMO velocity using
the semblance method having a dimension of [1 × 1].
The transitional output from the RNN layer (Y) has
the dimension of [p × nneurons], where we choose to
have nneurons ¼ 1000. The output Y goes through the
fully connected layer FC to produce the predicted out-
put Z. We can represent the network in Figure 4 in
mathematical form as

Zt ¼ FCðϕðXt ×Wx þ Yt−1 ×Wy þ bÞÞ;

¼ FC

�
ϕ

�
½Xt Yt−1 �

�Wx

Wy

�
þ b

��
; (7)

where ϕ is the ReLU activation function, weightWx has
the dimension of ninputs × nneurons, weightWy has the di-
mension of nneurons × nneurons, and bias b has a dimen-
sion of nneurons. To initialize the network, the weight
matrix is drawn from a normal distribution and bias
is set to zero.

Figure 3. Representation of a CMP gather (with offset size of
NX), and the blocks of data from the CMP gather used for
creating a single instance of a minibatch. The magenta line
represents the time at which velocity is being estimated,
and the red block (of size 2N) represents the data used for
estimating the velocity at that point. The second panel on
the right shows the corresponding NMO velocity.

Figure 4. Plot of the RNN architecture used in the NMO
velocity estimation. Here, Xi having a dimension of 1 × NX ,
represents the seismogram for a particular time step, all off-
sets. The term Yi is the transient result from the network with
dimension p × nneurons, Z is the final NMO velocity at the
center of the window considered, p represents the total time
window size 2N , and FC represents a fully connected layer.
Here, the RNN is represented similar to Figure 2b, unrolled in
time from left to right.

T822 Interpretation / November 2019

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Result
To demonstrate our algorithm, we applied it on pre-

stack 2D land vibroseis data provided by Geofizyka
Torun Sp. Z.o.o, Poland, available in the public domain.
Figure 5 shows a stacked section. The data have a shot
interval of 50 m, receiver interval of 25 m, and an offset
interval of 12 m. For simplicity, we choose a small re-
gion of the data set marked in the black window. We
performed some initial preprocessing and noise re-
moval before the data are ready for velocity analysis.
In our test case, we used 1000 neurons in the recurrent
network, 60 offsets in each gather, a window size of 100,
and a total of 700 samples in the time domain. The data
have a sampling rate of 2 ms. We initially generated the
NMO velocity using the semblance-based velocity
analysis for a small part of the section.

To train the network and optimize the weights of the
neurons in the RNN, we prepared the input seismic data
before NMO, and the corresponding picked NMO veloc-
ity as the output pair. Figure 6 shows the picked NMO
velocity using the semblance-based method, which is
treated as the given velocity. To train the RNN weights,

we picked 10% (approximately 80 gathers) of the CMPs,
uniformly placed, and the rest is kept as the testing set.
The location of the picked CMPs is shown with the dot-
ted lines in Figure 6. We divide the training set in mini-
batches, each minibatch containing 700 time samples
from a single gather. We ran multiple epochs of 2125
to train the network using Adam optimization and to
minimize the mean-squared error between the output
velocity and the correct provided velocity. Figure 7
shows the training error for subsequent epochs. The
network maps an abstract relationship between the
seismic gathers and the optimum NMO velocity. After
the network is trained, it is used to predict velocities
for all of the gathers (training and testing included).
Figure 8 shows the predicted NMO velocity from the
recurrent network. We also calculate the percentage
difference between the true/given velocity and the pre-
dicted velocity for the entire section of the data set.
Figure 9 shows the percentage error, having a maxi-
mum value of approximately 10%.

To validate our result, we performed a detailed
analysis of our estimation at one CMP location. Fig-
ure 10 shows one CMP gather at one CMP location

Figure 5. Plot of the stacked section of Poland data. The
black window represents the region where we performed
our training and testing for estimating NMO velocity.

Hand-picked NMO velocity

300 400 500 600 700 800 900 1000
CDP number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e 
(s

)

2.8

3

3.2

3.4

3.6

3.8

Figure 6. The given hand-picked NMO velocity. The dotted
lines represent the location of the training CMPs. There is
a total of 80 CMPs for training.

Figure 7. The average epoch error during training versus the
epoch number.

Predicted NMO velocity

300 400 500 600 700 800 900 1000
CDP number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e 
(s

)

2.8

3

3.2

3.4

3.6

3.8

Figure 8. The estimated NMO velocity from the RNN. The
dotted lines represent the location of the training CMPs. There
is a total of 80 CMPs for training.

Interpretation / November 2019 T823

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



(location no. 650), which is a part of the testing data set.
Figure 10a shows the noisy uncorrected CMP gather, in
which we have pointed out one of the several hyper-
bolas using a black ellipse. Figure 10b shows the same
CMP gather but corrected using the hand-picked NMO
velocity from the semblance. Figure 10c shows the CMP

gather but corrected using the estimated velocity from
the trained RNN. Finally, in Figure 10d, we show a com-
parison of the NMO velocity, with the given/true veloc-
ity in the blue and the estimated velocity in the orange.
To check the correctness of estimation for the complete
data set, we use the predicted NMO velocity for all of
the gathers, performed NMO correction, and finally
stacked the gathers to produce a stacked section. We
repeat the same procedure with the given hand-picked
NMO velocities as well. Figure 11a and 11b shows the
stacked section, in which the first stack is generated us-
ing the given hand-picked NMO velocity, and the sec-
ond stack is produced using the network estimated
NMO velocity. Just by observation, they seem quite sim-
ilar; however, there are some differences. We have used
a green box to represent regions where the reflector
continuity on the stacked section is better in the RNN-
predicted velocity and in the red box otherwise.

Discussion
Conventionally, the NMO velocity estimation — a

routine workflow, requires semblance calculated at each
CMP followed by velocity picking by an experienced
processor, which can be very time consuming. The main
benefit of ML comes from training for a few CMPs and its

Percentage difference in NMO velocities

300 400 500 600 700 800 900 1000
CDP number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e 
(s

)

0

1

2

3

4

5

6

7

8

9

10

Figure 9. The percentage difference in the estimation of
Vpredicted from the Vgiven NMO velocity. The dotted lines re-
present the location of the training CMPs. There is a total
of 80 CMPs for training.

Figure 10. (a) A gather before NMO correction at CMP location 650. One of the hyperbola is highlighted using an ellipse. (b) NMO-
corrected gather using the given NMO velocity, and the flatten hyperbola is marked by an ellipse. (c) NMO-corrected gather using
the predicted NMO velocity, and again the flatten hyperbola is marked by an ellipse. (d) The comparison of the given NMO velocity
(in blue) and the predicted NMO velocity (in orange).

T824 Interpretation / November 2019

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



subsequent application to the remaining data set in-
stantly to get NMO velocity immediately. In a typical ap-
plication, very few CMPs are picked for velocity, and,
generally, an interpolation is performed in between
them. However, performing interpolation does not take
into account any input from seismic data and, thus, is
prone to produce an erroneous result if any sudden
irregularity comes in the seismic data. However, while
applying the RNN algorithm, it uses the input data to pre-
dict the output velocity from the trained network and
thus can handle these irregularities in a much better way.

We used TensorFlow (Abadi et al., 2015) to imple-
ment our workflow in a very efficient environment.
To train the network, we used Nvidia K-40 GPUs and
for training using 80 CMPs; 2125 epochs and with a
learning rate of 0.001 to approximately 46 min. How-
ever, the training time depends on the number of time
samples and offset in the data. Comparing Figures 6
and 8, it is quite evident that the velocity obtained from
RNN is quite continuous, unlike the hand-picked veloc-
ity, which seems interpolated and has layers.

The RNN applied to the problem is quite flexible and
is not limited to just NMO velocity estimation. With a
few modifications, it can be applied to other geophysi-
cal problems, such as migration velocity analysis. In our
implementation of the network, the number of un-
knowns is approximately 106. Even though we used a
gradient-based local optimization, in ML, due to the high
dimension, there is a great chance that our solution is
close to the global minimum. In a low-dimensional prob-
lem, there exist several minima. However, in a high-di-
mensional optimization problem, most of the trajectory
followed in optimization, i.e., the critical points, are the
saddle points, which are relatively easy to escape for
the algorithm (Dauphin et al., 2014).

Conclusion
In this paper, we used an ML tool to solve one of the

most common seismic processing problems. We applied
the RNN to estimate NMO velocities directly from seis-
mic gathers and use those for NMO correction of the

gathers. Before using the network in velocity prediction,
it needs to be trained on a few gathers in a supervised
fashion using input-output pairs. The input to the training
requires the raw gathers before NMO correction (input)
and the NMO velocity (output). These initial NMO veloc-
ities can be estimated using conventional semblance-
based methods. Note that in this problem the temporal
and spatial information is necessary from the data. After
the network is trained, it can be used to predict the NMO
velocity for the remaining gathers. The RNN learns the
mapping from the data to the output velocity. Due to the
memory property of the recurrent network, current out-
put depends on the past output and the neighborhood
dependency can quickly be established; hence, better es-
timation of the NMO velocity can be obtained. Finally,
we demonstrated the method on a real data set from Po-
land, in which we trained the data set from just 10% of
the gathers and predicted the velocity for the rest of the
gathers. By comparing the RNN-predicted velocities with
those from the semblance-based velocities, we find that
they are in excellent agreement.

Acknowledgments
The authors would like to thank editor B. Nemeth, as-

sociate editors V. Jayaram and P. Jaiswal, and reviewers
J. Walda and S. Verma, along with one anonymous re-
viewer for their constructive criticisms that helped to im-
prove the manuscript. The authors would also like to
thank Geo-Energy Inc. for permission to publish and
Google for making TensorFlow available for a general
audience, which was used in the implementation.

Data and materials availability
Data associated with this research are available and

can be obtained by contacting the corresponding author.

References
Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.

Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D.

Stack using hand-picked NMO velocity

300 400 500 600 700 800 900 1000
CDP number

1
a) b)

1.2

1.4

1.6

1.8

2

2.2

T
im

e 
(s

)

Stack using Predicted NMO velocity

300 400 500 600 700 800 900 1000
CDP number

1

1.2

1.4

1.6

1.8

2

2.2

T
im

e 
(s

)

Figure 11. (a) The stacked section after NMO correction using the given NMO velocity and (b) the stacked section after NMO
correction using the estimated NMO velocity from the RNN. The green box shows the region where the stack section generated
from RNN-predicted velocity has better continuity and the red box otherwise.

Interpretation / November 2019 T825

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng, 2015, TensorFlow: Large-scale machine
learning on heterogeneous systems (Software available
from tensorflow.org).

Alfarraj, M., and G. AlRegib, 2018, Petrophysical property
estimation from seismic data using recurrent neural
networks: 88th Annual International Meeting, SEG, Ex-
panded Abstracts, 2141–2146, doi: 10.1190/segam2018-
2995752.1.

Alfarraj, M., N. Keni, and G. AlRegib, 2018, Property predic-
tion from seismic attributes using a boosted ensemble
machine learning scheme: SBGf/SEG Machine Learning
Workshop.

An, P., and W. M. Moon, 1993, Reservoir characterization
using seismic waveform and feedforward neural net-
works: 63rd Annual International Meeting, SEG, Ex-
panded Abstracts, 1450–1456, doi: 10.1190/1.1487090.

Bahdanau, D., K. Cho, and Y. Bengio, 2014, Neural machine
translation by jointly learning to align and translate: ar-
Xiv preprint arXiv:1409.0473.

Bengio, Y., P. Simard, and P. Frasconi, 1994, Learning long-
term dependencies with gradient descent is difficult:
IEEE Transactions on Neural Networks, 5, 157–166,
doi: 10.1109/TNN.72.

Biswas, R., M. K. Sen, V. Das, and T. Mukerji, 2019, Pre-
stack and poststack inversion using a physics-guided
convolutional neural network: Interpretation, 7, no. 3,
SE161–SE174, doi: 10.1190/INT-2018-0236.1.

Calderón-Maciás, C., M. K. Sen, and P. L. Stoffa, 1998, Au-
tomatic NMO correction and velocity estimation by a
feedforward neural network: Geophysics, 63, 1696–
1707, doi: 10.1190/1.1444465.

Calderón-Maciás, C., M. K. Sen, and P. L. Stoffa, 2000, Ar-
tificial neural networks for parameter estimation in geo-
physics: Geophysical Prospecting, 48, 21–47, doi: 10
.1046/j.1365-2478.2000.00171.x.

Cichocki, A., and R. Unbehauen, 1993, Robust estimation
of principal components by using neural network learn-
ing algorithms: Electronics Letters, 29, 1869–1870, doi:
10.1049/el:19931244.

Dai, H., and C. MacBeth, 1994, Split shear-wave analysis
using an artificial neural network: First Break, 12,
605–613, doi: 10.3997/1365-2397.1994038.

Dauphin, Y. N., R. Pascanu, C. Gulcehre, K. Cho, S. Gang-
uli, and Y. Bengio, 2014, Identifying and attacking the
saddle point problem in high-dimensional non-convex
optimization: Advances in Neural Information Process-
ing Systems, 2933–2941.

Di, H., Z. Wang, and G. AlRegib, 2018, Deep convolutional
neural networks for seismic salt-body delineation: Pre-
sented at theAAPG Annual Convention and Exhibition.

Fish, B. C., and T. Kusuma, 1994, A neural network ap-
proach to automate velocity picking: 64th Annual

International Meeting, SEG, Expanded Abstracts,
185–188, doi: 10.1190/1.1822888.

Freeman, J. A., and D. M. Skapura, 1991, Algorithms, ap-
plications, and programming techniques: Addison-
Wesley Publishing Company.

Funahashi, K.-I., and Y. Nakamura, 1993, Approximation of
dynamical systems by continuous time recurrent neural
networks: Neural Networks, 6, 801–806, doi: 10.1016/
S0893-6080(05)80125-X.

Girshick, R., J. Donahue, T. Darrell, and J. Malik, 2014,
Rich feature hierarchies for accurate object detection
and semantic segmentation: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 580–587.

He, K., X. Zhang, S. Ren, and J. Sun, 2016, Deep residual
learning for image recognition: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 770–778.

Hinton, G. E., 2012, A practical guide to training restricted
Boltzmann machines, in G. Montavon, G. B. Orr, and K.
R. Müller, eds., Neural networks: Tricks of the trade:
Springer, 599–619.

Hinton, G. E., and R. R. Salakhutdinov, 2006, Reducing the
dimensionality of data with neural networks: Science,
313, 504–507, doi: 10.1126/science.1127647.

Hochreiter, S., and J. Schmidhuber, 1997, Long short-term
memory: Neural Computation, 9, 1735–1780, doi: 10
.1162/neco.1997.9.8.1735.

Hopfield, J. J., 1982, Neural networks and physical systems
with emergent collective computational abilities: Pro-
ceedings of the National Academy of Sciences, 79,
2554–2558, doi: 10.1073/pnas.79.8.2554.

Hopfield, J. J., 2007, Hopfield network: Scholarpedia, 2,
1977 (revision #91363).

Huang, K.-Y., 1997, Hopfield neural network for seismic hori-
zon picking: 67th Annual International Meeting, SEG, Ex-
panded Abstracts, 562–565, doi: 10.1190/1.1885963.

Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012, Image-
net classification with deep convolutional neural net-
works: Advances in Neural Information Processing
Systems, 1097–1105.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel, 1989, Backpro-
pagation applied to handwritten zip code recognition:
Neural Computation, 1, 541–551, doi: 10.1162/neco
.1989.1.4.541.

Lee, J., and I. Tashev, 2015, High-level feature representa-
tion using recurrent neural network for speech emotion
recognition: 16th Annual Conference of the Interna-
tional Speech Communication Association.

Lukoševičius, M., and H. Jaeger, 2009, Reservoir comput-
ing approaches to recurrent neural network training:
Computer Science Review, 3, 127–149, doi: 10.1016/j
.cosrev.2009.03.005.

Ma, Y., X. Ji, T. W. Fei, and Y. Luo, 2018, Automatic velocity
picking with convolutional neural networks: 88th

T826 Interpretation / November 2019

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/segam2018-2995752.1
http://dx.doi.org/10.1190/segam2018-2995752.1
http://dx.doi.org/10.1190/segam2018-2995752.1
http://dx.doi.org/10.1190/segam2018-2995752.1
http://dx.doi.org/10.1190/1.1487090
http://dx.doi.org/10.1190/1.1487090
http://dx.doi.org/10.1190/1.1487090
http://dx.doi.org/10.1109/TNN.72
http://dx.doi.org/10.1109/TNN.72
http://dx.doi.org/10.1109/TNN.72
http://dx.doi.org/10.1190/INT-2018-0236.1
http://dx.doi.org/10.1190/INT-2018-0236.1
http://dx.doi.org/10.1190/INT-2018-0236.1
http://dx.doi.org/10.1190/1.1444465
http://dx.doi.org/10.1190/1.1444465
http://dx.doi.org/10.1190/1.1444465
http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
http://dx.doi.org/10.1046/j.1365-2478.2000.00171.x
http://dx.doi.org/10.1049/el:19931244
http://dx.doi.org/10.1049/el:19931244
http://dx.doi.org/10.3997/1365-2397.1994038
http://dx.doi.org/10.3997/1365-2397.1994038
http://dx.doi.org/10.3997/1365-2397.1994038
http://dx.doi.org/10.1190/1.1822888
http://dx.doi.org/10.1190/1.1822888
http://dx.doi.org/10.1190/1.1822888
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1126/science.1127647
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1190/1.1885963
http://dx.doi.org/10.1190/1.1885963
http://dx.doi.org/10.1190/1.1885963
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1016/j.cosrev.2009.03.005


Annual International Meeting, SEG, Expanded Ab-
stracts, 2066–2070, doi: 10.1190/segam2018-2987088.1.

Mao, J., W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille,
2014, Deep captioning with multimodal recurrent neural
networks (m-RNN): arXiv preprint arXiv:1412.6632.

McCormack, M. D., D. E. Zaucha, and D. W. Dushek, 1993,
First-break refraction event picking and seismic data
trace editing using neural networks: Geophysics, 58,
67–78, doi: 10.1190/1.1443352.

Moseley, B., A. Markham, and T. Nissen-Meyer, 2018, Fast
approximate simulation of seismic waves with deep
learning: arXiv preprint arXiv:1807.06873.

Moya, A., and K. Irikura, 2010, Inversion of a velocitymodel
using artificial neural networks: Computers and Geosci-
ences, 36, 1474–1483, doi: 10.1016/j.cageo.2009.08.010.

Murat, M. E., and A. J. Rudman, 1992, Automated first
arrival picking: A neural network approach 1: Geophysi-
cal Prospecting, 40, 587–604, doi: 10.1111/j.1365-2478
.1992.tb00543.x.

Phan, S., and M. K. Sen, 2018, Hopfield networks for
high-resolution prestack seismic inversion: 88th Annual
International Meeting, SEG, Expanded Abstracts, 526–
530, doi: 10.1190/segam2018-2996244.1.

Richardson, A., 2018, Seismic full-waveform inversion us-
ing deep learning tools and techniques: arXiv preprint
arXiv:1801.07232.

Ronneberger, O., P. Fischer, and T. Brox, 2015, U-net: Con-
volutional networks for biomedical image segmentation:
International Conference on Medical Image Computing
and Computer-Assisted Intervention, 234–241.

Röth, G., and A. Tarantola, 1994, Neural networks and inver-
sion of seismic data: Journal of Geophysical Research:
Solid Earth, 99, 6753–6768, doi: 10.1029/93JB01563.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.
C. Berg, and L. Fei-Fei, 2015, Imagenet large scale visual
recognition challenge: International Journal of Computer
Vision, 115, 211–252, doi: 10.1007/s11263-015-0816-y.

Schmidt, J., and F. A. Hadsell, 1992, Neural network stack-
ing velocity picking: 62nd Annual International Meeting,
SEG, Expanded Abstracts, 18–21, doi: 10.1190/1.1822036.

Shi, Y., X. Wu, and S. Fomel, 2018, Automatic salt-body clas-
sification using a deep convolutional neural network: 88th
Annual International Meeting, SEG, Expanded Abstracts,
1971–1975, doi: 10.1190/segam2018-2997304.1.

Vamaraju, J., and M. K. Sen, 2018, Mean field Boltzmann
machines for high resolution Kirchhoff migration:
88th Annual International Meeting, SEG, Expanded Ab-
stracts, 2006–2010, doi: 10.1190/segam2018-2997793.1.

Wang, J., and T.-l. Teng, 1997, Identification and picking of
s phase using an artificial neural network: Bulletin of
the Seismological Society of America, 87, 1140–1149.

Wu, H., B. Zhang, F. Li, and N. Liu, 2019, Semiautomatic
first-arrival picking of microseismic events by using the

pixel-wise convolutional image segmentation method:
Geophysics, 84, no. 3, V143–V155, doi: 10.1190/geo2018-
0389.1.

Wu, X., Y. Shi, S. Fomel, and L. Liang, 2018, Convolutional
neural networks for fault interpretation in seismic images:
88th Annual International Meeting, SEG, Expanded Ab-
stracts, 1946–1950, doi: 10.1190/segam2018-2995341.1.

Reetam Biswas received an M.S.
from the Indian Institute of Technol-
ogy, Kharagpur, and he is a graduate
student at the University of Texas at
Austin. His research interests include
transdimensional seismic inversion,
full-waveform inversion, and machine
learning.

Anthony Vassiliou received a Ph.D. (1986) in civil
engineering from the University of Calgary. He worked
in the past for Mobil R&D Corporation and Amoco Produc-
tion R&D. He founded GeoEnergy Inc. in 1998, of which he
is currently the CEO and president. His research interests
include migration velocity analysis, wave equation imag-
ing, full-waveform inversion for 3D land seismic data,
postmigration anisotropic waveform inversion, reservoir
characterization, and machine learning for velocity model
building.

Rodney Stromberg received a B.S. (1972) in geologic
engineering from the University of Utah. He started at
G.S.I. and then went on to Mobil Oil and Sohio among other
seismic service companies prior to his current position
beginning 2011 at GeoEnergy Inc. His research interests
revolve around seismic processing, including developing
methods and techniques for reducing noise and multiples
embedded in 3D land seismic collections.

Mrinal K. Sen received an M.S. from
IIT(ISM) Dhanbad and a Ph.D. from
the University of Hawaii at Manoa,
USA. He is a professor of geophysics
and the holder of the Jackson Chair in
applied seismology at the Department
of Geological Sciences and concur-
rently serves as the interim director
of the Institute for Geophysics at

the University of Texas at Austin. During 2013 and 2014,
he served as the director of the National Geophysical
Research Institute, Hyderabad, India. He is an honorary
member of SEG and is the recipient of SEG’s 2018 Virgil
Kauffman gold medal.

Interpretation / November 2019 T827

D
ow

nl
oa

de
d 

02
/1

0/
20

 to
 9

9.
29

.8
9.

57
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/

http://dx.doi.org/10.1190/segam2018-2987088.1
http://dx.doi.org/10.1190/segam2018-2987088.1
http://dx.doi.org/10.1190/segam2018-2987088.1
http://dx.doi.org/10.1190/1.1443352
http://dx.doi.org/10.1190/1.1443352
http://dx.doi.org/10.1190/1.1443352
http://dx.doi.org/10.1016/j.cageo.2009.08.010
http://dx.doi.org/10.1016/j.cageo.2009.08.010
http://dx.doi.org/10.1016/j.cageo.2009.08.010
http://dx.doi.org/10.1016/j.cageo.2009.08.010
http://dx.doi.org/10.1016/j.cageo.2009.08.010
http://dx.doi.org/10.1016/j.cageo.2009.08.010
http://dx.doi.org/10.1111/j.1365-2478.1992.tb00543.x
http://dx.doi.org/10.1111/j.1365-2478.1992.tb00543.x
http://dx.doi.org/10.1111/j.1365-2478.1992.tb00543.x
http://dx.doi.org/10.1111/j.1365-2478.1992.tb00543.x
http://dx.doi.org/10.1111/j.1365-2478.1992.tb00543.x
http://dx.doi.org/10.1111/j.1365-2478.1992.tb00543.x
http://dx.doi.org/10.1190/segam2018-2996244.1
http://dx.doi.org/10.1190/segam2018-2996244.1
http://dx.doi.org/10.1190/segam2018-2996244.1
http://dx.doi.org/10.1029/93JB01563
http://dx.doi.org/10.1029/93JB01563
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1190/1.1822036
http://dx.doi.org/10.1190/1.1822036
http://dx.doi.org/10.1190/1.1822036
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997304.1
http://dx.doi.org/10.1190/segam2018-2997793.1
http://dx.doi.org/10.1190/segam2018-2997793.1
http://dx.doi.org/10.1190/segam2018-2997793.1
http://dx.doi.org/10.1190/geo2018-0389.1
http://dx.doi.org/10.1190/geo2018-0389.1
http://dx.doi.org/10.1190/geo2018-0389.1
http://dx.doi.org/10.1190/geo2018-0389.1
http://dx.doi.org/10.1190/segam2018-2995341.1
http://dx.doi.org/10.1190/segam2018-2995341.1
http://dx.doi.org/10.1190/segam2018-2995341.1

